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Abstraet--A linear analysis of the stability of the flow in a laminar boundary layer under conditions of 
intensive interphase mass transfer, where high mass fluxes through the phase boundary induce secondary 
flows, is suggested. These secondary flows have an effect of 'injection' or 'suction' in the boundary layer 
depending on the direction of the intensive interphase mass transfer, and they have a variable velocity 
along the length of the phase surface. They are also proportional to the local mass flux through the phase 
boundary. The critical Reynolds numbers are obtained at different intensities of non-linear mass transfer 
in the laminar boundary layer. The influence of the direction of the intensive interphase mass transfer on 
the hydrodynamic stability is shown as well. In the cases shown intensive interphase mass transfer is 
directed toward the phase boundary (suction) and the increase of its intensity leads to an increase in the 
stability of the flow. In the opposite case (injection), turbulization results at considerably smaller values of 

the Reynolds number. Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

A great number of experimental investigations, where 
the rate of the mass transfer in systems with intensive 
interphase mass transfer cannot be described using 
the linear theory of mass transfer, are given in the 
literature. Very often they are explained with the Mar- 
angoni effect and the hydrodynamic instability [1-5], 
i.e. the induction of secondary flows with tangential 
direction to the phase boundary. These secondary 
flows change the shape of the velocity profile of the 
flow in the boundary layer. Therefore they change the 
hydrodynamic stability of this flow. 

Mass transfer in systems with intensive interphase 
mass transfer [6] most often is a result of high con- 
centration gradients. As a result of this, high mass 
fluxes induce secondary flows on the phase boundary 
[7-9]. The rate of these flows is determined directly 
from the concentration gradient of the transferred 
substance through a phase boundary as follows. 

MD 8c 
v (1) 

p 8n' 

where M is the molecular mass, D is the diffusion 
coefficient, c is the concentration of transferred sub- 
stance; p is the specific mass at the phase boundary 
surface and 8c/8n denotes differentiation normal to 
the interphase. 

Equation (1) gives a connection between the vel- 
ocity of the flow and the concentration distribution 
which leads to non-linearity in the equation of con- 
vective diffusion. 

Depending on the direction of interphase mass 
transfer, this effect of non-linear mass transfer leads 
to 'injection' or 'suction' in the boundary layer [10], 
i.e. to a decreasing or increasing of the hydrodynamic 
stability of the flow. 

Analysis of the hydrodynamic stability under these 
conditions will give an opportunity to distinguish the 
influence of the Marangoni effect from the effect of 
non-linear mass transfer on the hydrodynamic stab- 
ility of the systems with intensive interphase mass 
transfer. 

The theoretical analyses of the hydrodynamics [10 : 
p. 384-386, 45, 71, 98, 100] and the hydrodynamic 
stability [11] were conducted in the cases, where the 
normal component of the velocity on the phase 
boundary is constant along the boundary layer. It is 
directly seen from equation (1) that under the con- 
ditions of non-linear mass transfer in systems with 
intensive interphase mass transfer the rate of 'suction' 
('injection') changes from oo to zero. It leads to a 
change in the velocity profiles in the boundary layer 
[12]. Hence, it leads to a change of their hydrodynamic 
stability under these conditions and especially to a 
change of dependence from the rate and direction of 
the mass transfer. 

2. NON-LINEAR MASS TRANSFER 

The intensive interphase mass transfer in the gas 
(liquid)-solid systems (Fig. 1) will be demonstrated 
in the case of non-linear mass transfer for a stream 
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NOMENCLATURE 
a initial value of  the Blasius function 
A dimensionless wave number 
A0 parameter 
b initial value of  first derivative of  the 

Blasius function 
c concentration 
C dimensionless phase velocity, 

concentration in non-stationary flow 
D diffusion coefficient 
f Blasius function 
F amplitude 
i imaginary number 
k parameter 
L length 
M molecular mass 
p pressure 
P pressure of  non-stationary flow 
Re Reynolds number, Re = 1.72Re0 
Sc Schmidt number 
t time 
u velocity of  basic stationary flow in x 

direction 
U velocity of  non-stationary flow in x 

direction 
v velocity of  basic stationary flow in y 

direction 
V velocity of  non-stationary flow in y 

direction 
x coordinate 

y coordinate. 

Greek symbols 
wavenumber 

fl/ce phase velocity 
,' parameter 
6 boundary layer thickness 
~: parameter 
~/ similarity variable 
0 parameter 
), wavelength 
v kinematic viscosity 

variable 
~z pi 
p density 
q~ dimensionless amplitude 
o0 stream function in x direction 
°r' stream function in y direction 
~o small parameter. 

Subscripts and superscripts 
* conditions on the solid surface 
0 conditions of  the transferred substance 
I two-dimensional periodic disturbance 
cr critical number 
i imaginary part of  complex number 
max maximum 
min minimum 
r real part of  complex number. 

G a s  ( l iquid)  

3 ', 3 I 71 i 21 
3 ' 3 

; _q i : /  
3 , _7 j 

I -1 
So l id  x 

Fig. I. Velocity profiles in the boundary layer in gas (liquid) 
solid systems. 

flow along a semi-infinite plate [7, 13, 14, 26]. The 
mathematical model in this case takes the following 
form:  

~u ~gu 02u 

u s  7 + v _ -  = v - - ,  

c3u 0c 
0x+  =0, 

Oc ~c ~2c 
u~"  + v ~ 7  = . ' 00},2 

X = O, U = UO, C = C O 

M D  &' 
y = O ,  u = O ,  v -  p ,  @ ,  c = c * ;  

y ~ ,  u = u o ,  c = c o ,  (2) 

where v is viscosity ; u0 is the velocity of  potential flow, 
Co is the concentration of  transferred substance, c* is 
the concentration on the solid surface; p* is the gas- 
(liquid) density on the phase boundary (y = 0). 

The boundary condition for v on a solid surface 
O' = 0) leads to non-linearity in the equation that 
determines c from the system in equation (2) (in the 
approximation of  the linear theory of  mass transfer 
this condition has a form v = 0). 

The solution of  problem (2) can be obtained, if the 
following similarity variables are used : 

u = 0 .5u0~ ' ,  v = 0.5 ( q ~ ' - ~ ) ,  

c =  c o + ( c * - C o ) q ' ,  • = ~(~),  ee = q'(U), 
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U0 ~0.5 
= \ -4~x  } ' e = Sc °5, Sc = ~ ,  (3) 

Table 1. Initial values of ~, its derivatives and parameter k 

e 0 a b k 

where Sc is the Schmidt number. 
Substitution of equation (3) into system (2) leads 

to a system of ordinary differential equations 

@"+e-~@@" = O, q~"+eOq j '  = O, 

• (0) = 0q~'(0), ~'(0) = O, ~'(oo) = 2 ~ - ' ,  

oe(o)  = l ,  oe (oo )  = o,  ( 4 )  

where 0 is a small parameter, which characterizes the 
non-linearity of mass transfer and depends on the 
intensity of the interphase mass transfer : 

O -  M ( c * - c o )  (5) 

Problem (4) has been solved [13-15] numerically 
and asymptotically as well. The results obtained by 
asymptotic theory [13] are confirmed using direct 
numerical experiments [13, 15] and show that the sec- 
ondary flow with the rate ~ ( 0 ) =  0W'(0) does not 
change the character of the flow in the boundary layer, 
but only the shape of the velocity profile ~(r/) [14]. It 
is also proved by the following theoretical evaluations. 
The induction of secondary flows [equation (1)] on 
the face boundary has an effect of injection in (suction 
from) the boundary layer, depending on the direction 
of interphase mass transfer. This effect affects the 
potentiality of the flow at y --* oo and is not in con- 
tradiction with the boundary layer approximations 
used [10] 

Vo < uoRe~ 1/2, ReL -- uoL ,  (6) 

where v0 is the mean rate of injection (suction) through 
the solid surface of length L 

l f o- = Mot'oc) Vo = Z  vdx, v (7) 
;o* \ayL=o 

Introducing equation (3) into equation (8) leads to 
the following : 

Vo = - Ouo ReE 1/2~,(0). (8) 

Comparison of (7) with equation (9) shows that 
equation (7) is valid when 

10~'(0)1 < l. (9) 

Taking into account that I~'(0)1 < 1, obviously at 
101 < 1, the condition (7) is always valid. 

Analytical and numerical solutions of the problem 
(4) for different values of e and 0 allow the initial 
values of • and its derivatives to be found 

• (0) = a ,  ~'(0) = 0, ~"(0) = b, (10) 

10 

20 

1 -0.30 0.2546 1.710 1.232 
-0.20 0.1557 1.557 1.414 
-0.10 0.07162 1.432 1.576 

0 0 1.329 1.718 
0.10 -0.06196 1.239 1.849 
0.20 -0.1162 1.162 1.968 
0.30 -0.1643 1.095 2.076 

-0.05 0 . 0 2 2 9 5  0.01359 1.673 
0 0 0.01328 1.718 
0.05 -0.01237 0.01309 1.745 
0.10 -0.02074 0.01298 1.763 
0.20 -0.03196 0.01281 1.786 

-0.05 0 . 0 2 3 9 5  0.003389 1.668 
-0.03 0 . 0 1 2 1 9  0.003375 1.697 

0 0 0.003321 1.718 
0.03 -0.00570 0.003321 1.734 

and some of its values [13] are shown in Table 1. The 
linear analysis is made considerably easier considering 
equation (4) as a Cauchy problem. 

It is seen from Table 1 that the initial conditions a 
and b include the effect of the mass transfer on the 
velocity profiles in the boundary layer and depend 
considerably on the magnitude and the direction of 
the rate of the induced flow, respectively, on the rate 
and the direction of the intensive interphase mass 
transfer. 

At high values of 0, in the case of liquids (e >> 1), 
numerical solution cannot converge due to an increas- 
ing singular perturbation (or stiffness) of the solution 
of the boundary layer. 

It is seen from Table 1 that 0 > 0 (0 < 0) cor- 
responds to 'injection' in ('suction' from) the bound- 
ary layer and according to the theory of the hydro- 
dynamic stability [10] the decrease (increase) of the 
hydrodynamic stability of the flow in the boundary 
layer should be expected. 

3. STABILITY 

The influence of intensive interphase mass transfer 
on the hydrodynamic stability of the flows in a laminar 
boundary layer will be investigated by applying the 
linear stability theory [10, 16]. This theory wilt be 
applied also for an almost parallel flow in a boundary 
layer, as it has been done in refs. [17, 18], taking into 
account two linear scales 

x, ~ =  v~00. (11) 

The relation between these two scales for x = L is 
connected with the Reynolds number 

ReL uoL ( L )  2 
- - >>  1 .  ( 1 2 )  

v 
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The approximations of  the boundary layer [equa- 
tion (2)] are zero-th order approximation in regard of 
the small parameters (6/L) 2, i.e. we use substantially 
the following relations : 

?~v ~2u ?2u ?2v ~2r 
- ~ << , << ~-- , ( 1 3 )  

~x&'  ?x:  &.'~ ?.v-" ?v-' 

they will be used in our analysis. 
The linear stability analysis considers a non-station- 

ary flow (U, V, P), obtained as a combination of  a 
basic stationary flow (u, v) and two-dimensional per- 
iodic disturbances (uhv~,pJ with small amplitudes 
(,o << 1): 

U(x,y,  t) = u(x,y) +(,~" u, (x,y, t), 

J/(X,  y ,  [ )  = l ! ( X ,  y )  q - O ) "  l' t ( -g , . l ' , / ' ) ,  

P(x. y, t) ~,) "p~ (.v, y, t), 

C(x, y, t) = c(x, y) + e)" c, (x, y, t). (14) 

The non-stationary flow, thus obtained, satisfies the 
full system of  Navier-Stokes equations 

U ~  + . . . . . . . .  + v  c5[ + cx  V & , -  p ?x \ ~ x  e + ?v 2) '  

~t + U ? ~  + V = -  = - -  
<,,, - ,  e,; + ' ~ < , 7  + c,, 2 ) '  

~U ?V 
---  ~ = 0 ,  
?x + (v  

I , : :  c '? 

x = 0 ,  U = u 0 ,  V = 0 ,  P = P 0 "  

?C 
v = 0 .  U = 0 .  V =  - O A ,  ;--  : 

CF 

{Pvl vzh c3vl ~v ~v 
- - + u ~ - + v ~ + u ~ - -  ~ - -  
+Tt c,.r . ~x +l+ (?v 

1 @ ,  v(t?2v, ~'~2t, i ~ 
~, ay ~ \ a x  2 + a > , 2 /  

#Ul ?[ '1 
?x + ?3'  = O: 

v = 0 ,  ul - 0 ,  v~ = 0 ,  P~ = P 0 ;  

/" = 0 .  U I = 0 ,  1'1 = 0 ,  P l  = P 0 :  

v - + z ,  ul = 0 .  vl = 0 .  (17) 

Differentiating between y and x of  the first two 
equations gives us the opportunity to exclude the pres- 
sure pL. The stability of  the basic flow will be examined 
considering periodic disturbances of  the form 

ul = F ' (y)  exp i ( ~ x -  fit), 

v l = &FO, ) exp i ( ~ x -  fit), (18) 

where FO') is the amplitude of one-dimensional dis- 
turbance (regarding y) ; ~ and fl/~ are, respectively, its 
wavenumber and phase velocity 

2n 
O; = _ _ ,  f l  = f ir  q -  i f l  i , (19) 

z 

In expression (19L 2 is the wavelength, fl~ is the 
circle frequency and fl, is the increment factor. Obvi- 
ously, the condition for the stability of  the flow is 

fii < 0. (20) 

In the case of  fli > 0 the basic flow is unstable (the 
amplitude grows with time). 

4. GOVERNING EQUATION 

Introducing equation (18) into equation (17) leads 
to Orr-Sommerfeld  type of  equations [25, 27] for the 
amplitude of  the disturbances 

y--.  ~ ,  U =  u,, V = O ,  P Po, (15) 

where A0 

rD 
A0 . . . . .  . (16) 

C* - - C  0 

After linearizing equation (15), i.e. in zero approxi- 
mation of  the small parameters o f  and 0"(~, sub- 
stitution of  equation (13) and (14) in equation (15) 
leads to the following problem : 

~gu~ ~?u~ (?ul ~','u ()u 

, ~  + u  ,~- + t ,  a~-  + " '  c~x + v ,  4r  

l .> ,  r.:2u, 
- p a ,  + ' ' ~ , ~  + 4 , ' : /  

(u - -  ~)  (F''-°:2 F ) -  ('~eu~ [ 

iv 
- (F" 2~2F" + ~4F) 

y = 0 ,  F = 0 ,  F ' = 0 ,  

v ~ o c ,  F = 0 ,  F ' = 0 .  (21) 

In equation (21) we have F = F(y),  while u and v 
depend on y, and vx, hence, the dependence on x is 
insufficient. This gives us an opportunity to consider 
.v as a parameter [19]. There are four constants in 
equation (21), where v and c~ are known beforehand. 
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while eigenvalues of fir and fl~ as well as eigenfunction 
F(y), are looked for. Obviously thus determined 
eigenvalues of fir and flj depend on x and at some Xcr 

f l i (Xcr )  = O, (22) 

i.e. the velocity profile u(x, y) is not stable. 
The assumption that the variable x is a parameter in 

equation (21) allows a new variable to be introduced 

y /Uo'~ °s 2 
= 6 = Y ~ x )  =~t / '  (23) 

Hence all functions in equation (21) can be ex- 
pressed by the new variable ~ (23) 

u = uaf'(~), v = 0.5 (g_d r ' - f ) ,  

F(y) = q~(~), F U) = 6-~tp ~), j = 1 . . . . .  4. (24) 

It is seen from equations (4), (6) and (24) tha t fcan  
be determined from 

2f" + f f"  = O, 

g,2 

f(0) = a, f ' (0)  = 0, f"(0) = ~-b. (25) 

Introducing equation (24) in equation (21) leads to 
the following Orr-Sommerfeld type of equation : 

( f '  - C)(~p" - AZ qg) - f "  q9 

i{ 
- A Reo (~°'~-2A2~°"+A4q))-l(~f' f)q;" 

~o(o) = o,  ~o'(o) = o,  ~ o ( ~ )  = o,  ~o'(oo) = o,  

(26) 

where 

A = ~ ,  C =  fl -Cr+iCi ,  R e =  1.72u°6. 
O~U o F 

(27) 

The linear analysis of the hydrodynamic stability of 
a laminar boundary layer under the conditions of 
intensive interphase mass transfer finally are reduced 
to determining Cr and tP(O at Ci = 0, when Re and A 
are given. The minimum Reynolds number, i.e. the 
critical Reynolds number Reef, when the flow ceases 
to be stable, can be obtained from the dependence 
Cr(Re). 

5. NUMERICAL METHOD 

The problem (26) is an eigenvalue problem about 
C, when Re and A are given. The imaginary part of 
the eigenvalue C determines whether or not the basic 

flow is stable relative to infinitesimal disturbances. 
Since the problem is a linear'eigenvalue problem, in 
theory it is possible to solve for C = C(Re, A). Solu- 
tions for this problem are usually presented in two 
ways : for specific values of the parameters A and Re, 
the corresponding value of C is tabulated or, the locus 
in the (Re, A) plane of which Ci = 0 (the 'neutral 
stability curve') is plotted. The critical Reynolds num- 
ber is the minimum Reynolds number for which an 
infinitesimal disturbance will grow. We apply the so 
called time growing disturbances when Re and A are 
given real values, whereas the parameter C is the 
searching complex eigenvalue. 

In order to solve problem (26) on the infinite inter- 
val numerically, the boundary conditions (tp(oo) = 0, 
~0'(ov) = 0) are assumed to be at a finite distance 

= ¢~ >> 1 far from the plate. Far from the wall, the 
boundary conditions will be replaced by two differ- 
ential equations. In order to gain these equations the 
solution [10] of equation (25) is used at higher values 
of~ 

f(~) = ~-k + O.231f~ d~ f~ exp [-¼(~-k)2] d~. 

(28)  

The numerical solution of equation (25) and its 
comparison with equation (28) shows that an accu- 
racy of 10 4_ 10-6 is reached when { is greater than 
5 4 ,  and we can assume 

f ' = l ,  f ' = f " = 0 ,  C f ' - f = k ,  ~ f ' = 0 .  

(29) 

Thus introducing equation (29) into equation (26) 
leads to the expression, which is valid in the case of 
~ > 6  

i [- tv 
(1 -C)(q~"--A2~o) A-ReL(tp -2AZ~p"+A4~o) 

I m a 2 q 
-skq~ + ~-kcp' . (30) 

The solution of equation (30) depends on four con- 
stants [20, 21], two of them are equal to zero, because 
two of the solutions of the characteristic equation 
(30) are positive, i.e. they satisfy conditions 
~ o ( ~ )  = q ; ( ~ )  = 0 :  

q~ = C~ exp(--A¢) + C2 exp(-~,~), (31) 

where the constants Ca and C2 are determined using 
the boundary conditions. If we exclude these constants 
from equation (31) this will lead to the following 
relations for ~ >~ ~o~ = 6 : 

( ( p " - - A Z f p ) ' - - 7 ( ~ " - - A Z t p )  = 0, ~ = ~ac, 

(tp"--72~o)'+A(~o"--y2qg) = 0, (32) 

where we obtain for y the following 
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k x / k 2 ÷ 1 6 A [ A + i R e ( 1 - - C ) ]  
(33) 

] ' = 4 - -  4 

The numerical solution of equation (25) for differ- 
ent values of 0 shows that k depends on 0 (Table 1). 
In the case of 0 = 0 the comparison of Re~ ~ 500 [22-- 
23] in the approximation of the parallel flows with 
Re~ = 501 obtained by us in a case of almost parallel 
flows, shows that R e ,  depends slightly on k. Anal- 
ogous results have been obtained at 0 4= 0. 

In matrix form equation (26) gains the following 
form : 

tb;l °°lI l b2 0 - 1 0 b, 
+ - = 0 ,  

b~ 0 0 - 1 b~ 

b a~ a 2 a 3 a4 b~ 

(34) 

and a~ (J = 1 . . . . .  4) are obtained directly from equa- 
tion (26): 

a I = [iA 3 R e ( f ' - B ) - - i A  R e f " + A 4 ] ,  

A 2 
a~ = '~_(~f ' " - f " )  + 2 ( ~ . f ' - . I ) ,  

a3 = -- [iA Re(,[" - B) + 2A2], 

a4 = - ~ ( ~ f ' - f ) ,  

where b i ( j  = 1 . . . . .  4) 

bl =q),  b2 =q) ' ,  b~ =(p", b4 =q)'". 

The boundary conditions are transformed in 

L, o00o] , - = 0 ,  ~ = 0 ;  (35) 
0 1 0 b 3 

b4 

and 

- A y  2 -72  A b~ 
= 0 ,  ~ = ~  = 6 ,  

(36) 

respectively. 
Using substitution 

bi=(pU~(~),  ( j =  1 . . . . .  4), B = ( b , , b 2 , b 3 , b 4 )  T. 

The eigenvalue problem, [equations (35) and (36)] 
can be written in the form 

B'(~) + A ( ~  ; C)B(~) = 0, ~ [ 0 , ~ . ]  ; (37) 

~'0~B=0, ~ = o ,  ~'TB=O, ~ = ~ ,  (38) 

where A(~ ; C) is 4 x 4-matrix of continuous com- 
ponents about  ~ e [0, oo] and depending on c ; WT and 
T0 x are scalar matrices of order 4 x 2 (~T denotes a 
transpose matrix of W). 

To solve the eigenvalue problem, (37) and (38) we 
use the method proposed by Abramov [24]. Let 
B(~_ ; C) be an arbitrary solution of system (37) satisfy- 
ing the boundary condition at ~ = ~ .  Then, as it has 
been shown in ref. [24], the solution W(~ ; C) of the 
initial value problem 

~'- - (AT÷~IJ(IPTII / )  I ~ T A T ) ~  = 0, ~e [0, oo1, 

(39) 

(40) ~ = ~I',, 4 = ~ ,  

satisfies 

~ ( ~ ; C ) B ( ~ ; C ) = 0  for any ~E[0, oo], 

i.e. we can have the boundary conditions at ~ = ~_ 
transferred to any ~ ~ [0, oo]. 

Hence, by integrating equations (39) and (40) up to 
= 0 the required eigenvalue relation is obtained in 

the form 

( ~F~ ~ = 0 ,  (41) det \vT,0(c)J 

where ~1,o(C) denotes the solution of equations (39) 
and (40) at ~ = 0. 

The proposed method is stable and w~pT = const 
along the integration path. The basic procedure is to 
iterate C until the solution C* of characteristic equa- 
tion (41) is obtained with a given accuracy. The same 
procedure has to be repeated with greater ~<.~ with a 
view to convergence of the successive approximations 
C*. When a convergence is established with the pre- 
scribed accuracy the last computer C* is taken as an 
eigenvalue of the original problem (26). The numerical 
experiments show that an accuracy of 10 . 4 -  10 .6 is 
reached when ~ ~ is greater than 5-6. 

6. RESULTS AND DISCUSSION 

The neutral curves presented in (Re,  A)  as well as 
in the (Re,  C) plane are given in Figs 2-7. They are 
obtained for gases (e, = 1) and for liquids (e = 10, 20) 
as well. 

The critical Reynolds numbers Rec,, corresponding 
wave velocities Cr and wave numbers A are obtained. 
Crmm and Amin are also obtained from these results. 
We denote Crm~n and Ami n the minimal values for wave 
velocities and wave number  at which the flow is stable 
at any Reynolds number  Re, respectively. They are 
shown in Table 2 with dependence on the magnitude 
and on the direction of the concentration gradient, at 
the conditions of an intensive interphase mass trans- 
fer. 

It is seen from Figs 2-7 and from Table 2, that the 
intensive interphase mass transfer directed toward the 
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A o.§ 
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0 I I I i I i i I 
200 400 600 800 1000 1200 1400 1600 1800 2000 

Re 
Fig. 2. The neutral curve for the wave number A as a function of the Reynolds number Re in a case of 

e = l .  

A 0.4 

0.3 

0.2 

O-0.2 0 -0.1 0"0.05 8-0.0 =- , 

0 , 1  I I I I I I 

400 500 600 700 800 900 1000 1100 

Re 
Fig. 3. The neutral curve for the wave number A as a function of the Reynolds number Re in a case of 

s =  10. 

phase boundary (0 < O) (the effect of  'suction') sta- 
bilizes the flow, i.e. the rise of  the concentration 
difference [Co-c*[ leads to an increase of  Recr and to 
a decrease of  C r m i n  and Ami,. In the case of  intensive 
interphase mass transfer directed from the phase 
boundary toward the volume (0 > O) (the effect of  
' injection') a destabilization of  the flow is observed, 
i.e. the rise of  the concentrat ion difference Ic0-c*l  
leads to a decrease of  Reef and to an increase of  C r m i n  

a n d  Ami n- 
The high concentrat ion gradients have a stabilizing 

effect at 0 < O, that is significantly higher than the 

destabilizing one in the case of  a change in the direc- 
tion of  mass transfer (0 > 0). 

The discussions above are taking into account the 
fact that diffusive fluxes through the face boundary at 
(0 < O) increase with the rise of  the concentration 
difference ]c0-c*],  while at (0 > O) they decrease with 
the rise of  Lc*-c0]. 

The results obtained could be o f  use in clarification 
of  the mechanism and the kinetics of  a number of  
practically interesting processes. For  instance, in 
l iquid-solid systems the anode dissolving of  metals in 
the electrolyte flow under the conditions of  intensive 
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Fig. 4. The neutral curve for the wave number A as a function of the Reynolds number Re in a case of 

;: = 20. 
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Fig. 5. The neutral curve for the wave velocities Cr as a function of the Reynolds number Re in a case of 

interphase mass transfer can rise substantially before 
flow turbulence for comparatively small values of  
Reynolds number,  while the electrode position of  met- 
als out o f  concentrated solutions can be implemented 
at the laminar conditions at high values of  Reynolds 
number. The intensive interphase mass transfer is o f  
interest for the process of  ablation ( for  example, laun- 

ching a spacecraft in a denser atmospheric layer). 
Intensive evaporation of  substance from a solid sur- 
face leads to an increase of  the interphase heat transfer 
coefficients, i.e. to a decrease of  'undesired'  heat flux 
toward the spacecraft (missile) rounded fuselage nose. 
It is seen from the results obtained that  at these con- 
ditions the turbilization of  gas at considerably small 
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Fig. 6. The neutral curve for the wave velocities Cr as a function of the Reynolds number Re in a case of 
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Fig. 7. The neutral curve for the wave velocities Cr as a function of the Reynolds number Re in a case of 

= 20. 

Reynolds  numbers  is possible, which will affect also 
the rate of  in terphase  heat  transfer.  

The observed influence of  the intensive interphase 
mass t ransfer  on  the hydrodynamic  stabili ty in gas 

( l iquid)-sol id systems is much  more  interest ing for 
systems with a movable  face bounda ry  (gas-l iquid,  
l iquid- l iquid) ,  which will be discussed in a future 
paper.  
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Table 2. Values of the critical Reynolds numbers Reor, cor- 
responding wave velocities C,., wave numbers A and CNni,. 

A~,o obtained 

~: 0 Re~.~ A C~ Am,, C ...... 

1 -0 .30  1619 0.259 0.3281 0.301 0.3310 
-0 .20  1014 0.285 0.3587 0.322 0.3599 
-0 .10  689 0.290 0.3816 0.340 0.3848 

0 501 0.305 0.4035 0.359 0.4067 
0.10 386 0.309 0.4196 0.373 0.4243 
0.20 310 0.320 0.4351 0.387 0.4396 
0.30 258 0.331 0.4488 0.398 0.4526 

l0 -0 .05  555 0.300 0.3960 0.351 0.3990 
0 501 0.305 0.4035 0.359 0.4067 
0.05 476 0.305 0.4062 0.360 0.4097 
0.10 459 0.305 0.4085 0.361 0.4124 
0.20 437 0.310 0.4123 0.367 0.4155 

20 --0.05 558 0.305 0.3959 0.351 0.3978 
0.03 528 0.305 0.4010 0.354 0.4037 
0 501 0.305 0.4035 0.359 0.4067 
0.03 488 0.305 0.4064 0.362 0.4099 
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